Exercise 1

- 1. Using DeMorgan's rule, state the negation of the statement: "The car is out of gas or the fuel line is plugged."
 - (a) The car has gas or the fuel line is unplugged
 - (b) The car has gas and the fuel line is unplugged
 - (c) The car is out of gas and the fuel line is plugged
 - (d) The car is out of gas or the fuel line is plugged

Ans : b. A=The car is out of gas, B=the fuel line is plugged . Then negation of $A\cup B=(A\cup B)^c=A^c\cap B^c$

- 2. How many functions are there from $\{0,1\}^n$ to $\{1,2,\ldots,n\}$.
 - (a) n^{2^n}
 - (b) $n2^n$
 - (c) 2^n
 - (d) $n+2^n$

Ans : a. # of functions from a set A to B is precisely $|B|^{|A|}$. In this case |B| = n and $|A| = 2^n$.

- 3. Let $D = \{-48, -14, -8, 0, 1, 3, 16, 23, 26, 32, 36\}$. Determine which of the following statements are true and which are false. Provide counterexamples for those statements that are false. Prove the statements that are true.
 - (a) $\forall x \in D$, if x is odd then x > 0.
 - (b) $\forall x \in D$, if x is less than 0 then x is even.
 - (c) $\forall x \in D$, if x is even then $x \leq 0$.
 - (d) $\forall x \in D$, if the ones digit of x is 6, then the tens digit is 1 or 2.

Ans : a & b. Trivial to check.

- 4. If A and B are two sets such that |A| = 8 and |B| = 9 and $|A \cup B| = 15$ then what is $|A \cap B|$?
 - (a) 0
 - (b) 1
 - (c) 4
 - (d) 2

Ans : d. $|A \cap B| = |A| + |B| - |A \cup B| = 8 + 9 - 15 = 2$

5. A pair of numbers x and y satisfy a system of inequalities if

$$\begin{cases} 3 \le x \le 5 \text{ and} \\ |x - y| < 1. \end{cases}$$

What are the conditions under which x and y fail to satisfy this system?

- (a) x < 3 or x > 5 or |x y| < 1
- (b) $3 \le x \le 5$ or |x y| < 1
- (c) x < 3 or x > 5 or $x \ge y + 1$ or $y \ge x + 1$
- (d) $x \leq 3$ or $x \geq 5$ or x > y + 1 or y > x + 1

Ans: c. It fails when one of the conditions $3 \le x \le 5$ or |x-y| < 1 is violated. First condition violated means x < 3 or x > 5. Second condition implies either x < y + 1 or x > y - 1. That is violated when $x \ge y + 1$ or $y \ge x + 1$.

- 6. If $S = \{0, 1\}$ and $T = \{a, e, i, o, u\}$ then what is the number of relations between S and T? Ans: Number of relations is explicitly $2^{|S||T|}$. In this case |S| = 2, |T| = 5. Hence # relations = $2^{10} = 1024$.
- 7. If A, B are two sets such that |A| = 3 and |B| = 5, then what are the possible values of $A \cup B$? Multiple answers can be correct.
 - (a) 3
 - (b) 5
 - (c) 8
 - (d) 9

Ans : b & c . a can not be correct because $|A \cup B| \ge 5$. (All elements of A and B are in the union . As B has at least 5 elements those elements are there in the union . Hence the size is at least 5) . It can not be bigger than 8 because even if all the elements of A and B are different then maximum 8 elements can be there in the union. Hence d is not possible. 5 is indeed possible when $A \subset B$. c possible when $A \cap B = \phi$.

- 8. If a, b, c, d are positive integers such that a divides c and b divides d, then is it true that a + b divides c + d?
 - (a) True
 - (b) False

Ans : b . Example take $a=2,c=4,b=5,d=15.\ 2$ divides 4 , 5 divides 15 but 2+5=7 does not divide 4+15=19 .

9. If $S=\{0,1\}$ and $T=\{a,e,i,o,u\}$ then what is $|S\times T|$?

Ans : Precisely $|S|\times |T|=2\times 5=10$.